

CELANEX® 3319 ED3002 BLACK

CELANEX® PBT

Celanex 3319 is an injection molding flame retarded, 30% fiberglass reinforced polybutylene terephthalate which has an excellent balance of mechanical properties and processability. It is well suited for electrical connector and sensor housing applications.

Product information			
Resin Identification	PBT-GF30 FR(17)		ISO 1043
Part Marking Code	>PBT-GF30 FR(17)<		ISO 11469
Rheological properties			
Melt volume-flow rate	3	cm ³ /10min	ISO 1133
Temperature	250	°C	
Load	2.16	kg	
Moulding shrinkage range, parallel	0.5 - 0.7	%	ISO 294-4, 2577
Moulding shrinkage range, normal	1 - 1.2	%	ISO 294-4, 2577
Typical mechanical properties			
Tensile modulus	11500	MPa	ISO 527-1/-2
Tensile stress at break, 5mm/min	140	MPa	ISO 527-1/-2
Tensile strain at break, 5mm/min	2.1	%	ISO 527-1/-2
Flexural modulus	11100	MPa	ISO 178
Flexural strength		MPa	ISO 178
Charpy impact strength, 23°C	50	kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C		kJ/m²	ISO 179/1eA
Poisson's ratio	0.33 ^[C]		
[C]: Calculated			
Thermal properties			
Melting temperature, 10 ° C/min	225	°C	ISO 11357-1/-3
Temperature of deflection under load 1.8 MPa	209	°C	ISO 75-1/-2

Melting temperature, 10°C/min	225 °C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	209 °C	ISO 75-1/-2

Flammability

Burning Behav. at 1.5mm nom. thickn.	V-0	class	IEC 60695-11-10
Thickness tested	1.5	mm	IEC 60695-11-10
UL recognition	yes		UL 94
Burning Behav. at thickness h	V-0	class	IEC 60695-11-10
Thickness tested	0.75	mm	IEC 60695-11-10
UL recognition	yes		UL 94
Glow Wire Flammability Index, 0.75mm	960	°C	IEC 60695-2-12
Glow Wire Flammability Index, 1.5mm	960	°C	IEC 60695-2-12
Glow Wire Flammability Index, 3.0mm	960	°C	IEC 60695-2-12
Glow Wire Ignition Temperature, 3.0mm	825	°C	IEC 60695-2-13

Printed: 2025-05-30 Page: 1 of 3

Revised: 2025-05-16 Source: Celanese Materials Database

CELANEX® 3319 ED3002 BLACK

CELANEX® PBT

Electrical properties

Volume resistivity>1E13 Ohm.mIEC 62631-3-1Electric strength28 kV/mmIEC 60243-1Comparative tracking index225IEC 60112

Physical/Other properties

Density 1640 kg/m³ ISO 1183

Injection

Drying Recommended	yes	
Drying Temperature	120	°C
Drying Time, Dehumidified Dryer	4	h
Processing Moisture Content	≤0.02	%
Melt Temperature Optimum	250	°C
Min. melt temperature	240	°C
Max. melt temperature	260	°C
Screw tangential speed	0.1 - 0.3	m/s
Mold Temperature Optimum	80	°C
Min. mould temperature	60	°C
Max. mould temperature	130	°C

Characteristics

Processing Injection Moulding

Delivery form Pellets

Additives Flame retardant Special characteristics Flame retardant

Additional information

Injection molding Preprocessing

To avoid hydrolytic degradation during processing, CELANEX resins have to be dried to a moisture level equal to or less than 0.02%. Drying should be done in a dehumidifying hopper dryer capable of dewpoints <-30°F (-34°C) at 250°F (121°C) for 4 hours..

Processing

Rear Temperature 240-250 (deg C) Center Temperature 245-260 (deg C) Front Temperature 250-265 (deg C) Nozzle Temperature 255-260 (deg C) Melt Temperature 245-265 (deg C) Mold Temperature 50-100 (deg C) Back Pressure 0-50 psi

Screw Speed Medium
Injection Speed Fast

Printed: 2025-05-30 Page: 2 of 3

Revised: 2025-05-16 Source: Celanese Materials Database

(+) 18816996168 Ponciplastics.com

CELANEX® 3319 ED3002 BLACK

Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided, in particular for flame retardant grades. Up to 50% clean and dry regrind may be used for the '16 series' flame retardant grades.

Processing Notes

Pre-Drying

To avoid hydrolytic degradation during processing, CELANEX resins have to be dried to a moisture level equal to or less than 0.02%. Drying should be done in a dehumidifying hopper dryer capable of dewpoints <-40°F (-40°C) at 250°F (121°C) for 4 hours.

Storage

For subsequent storage of the material in the dryer until processed (\leq 60 h) it is necessary to lower the temperature to 100 ° C.

Printed: 2025-05-30 Page: 3 of 3

Revised: 2025-05-16 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.